Monday, April 22, 2024

Hepatitis B

 Hepatitis B is an infectious disease caused by the hepatitis B virus (HBV) which affects the liver. It can cause both acute and chronic infections. Many people have no symptoms during the initial infection. Some develop a rapid onset of sickness with vomiting, yellowish skin, tiredness, dark urine, and abdominal pain. Often these symptoms last a few weeks and rarely does the initial infection result in death. It may take 30 to 180 days for symptoms to begin. Of those who get infected around the time of birth, 90% develop chronic hepatitis B while less than 10% of those infected after the age of five do. Most of those with chronic disease have no symptoms; however, cirrhosis and liver cancer may eventually develop. These complications result in the death of 15 to 25% of those with chronic disease.

The virus is transmitted by exposure to infectious blood or body fluids. Infection around the time of birth or from contact with other people's blood during childhood is the most frequent method by which hepatitis B is acquired in areas where the disease is common. In areas where the disease is rare, intravenous drug use and sexual intercourse are the most frequent routes of infection. Other risk factors include working in healthcare, blood transfusions, dialysis, living with an infected person, traveling in countries where the infection rate is high, and living in an institution. Tattooing and acupuncture led to a significant number of cases in the 1980s; however, this has become less common with improved sterility. The hepatitis B virus cannot be spread by holding hands, sharing eating utensils, kissing, hugging, coughing, sneezing, or breastfeeding. The infection can be diagnosed 30 to 60 days after exposure. The diagnosis is usually confirmed by testing the blood for parts of the virus and for antibodies against the virus. It is one of five known hepatitis viruses: A, B, C, D, and E.

The infection has been preventable by vaccination since 1982. Vaccination is recommended by the World Health Organization on the first day of life if possible. Two or three more doses are required at a later time for full effect. This vaccine works about 95% of the time. About 180 countries gave the vaccine as part of national programs as of 2006. It is also recommended that all blood be tested for hepatitis B before transfusion and that condoms be used to prevent infection. During an initial infection, care is based on the symptoms that a person has. In those who develop chronic disease, antiviral medication such as tenofovir or interferon may be useful; however, these drugs are expensive. Liver transplantation is sometimes used for cirrhosis.

About a third of the world population has been infected at one point in their lives, including 240 million to 350 million who have chronic infections. Another 129 million new infections occurred in 2013. Over 750,000 people die of hepatitis B each year. About 300,000 of these are due to liver cancer. The disease is now only common in East Asia and sub-Saharan Africa where between 5 and 10% of adults are chronically infected. Rates in Europe and North America are less than 1%. It was originally known as "serum hepatitis". Research is looking to create foods that contain HBV vaccine. The disease may affect other great apes as well.

Signs and symptoms

Acute infection with the hepatitis B virus is associated with acute viral hepatitis, an illness that begins with general ill-health, loss of appetite, nausea, vomiting, body aches, mild fever, and dark urine, and then progresses to the development of jaundice. It has been noted that itchy skin has been indicated as a possible symptom of all hepatitis virus types. The illness lasts for a few weeks and then gradually improves in most affected people. A few people may have a more severe form of liver disease known as (fulminant hepatic failure) and may die as a result. The infection may be entirely asymptomatic and may go unrecognized.

Chronic infection with hepatitis B virus either may be asymptomatic or may be associated with chronic inflammation of the liver (chronic hepatitis), leading to cirrhosis for several years. This type of infection dramatically increases the incidence of hepatocellular carcinoma (HCC; liver cancer). Across Europe, hepatitis B and C cause approximately 50% of hepatocellular carcinomas. Chronic carriers are encouraged to avoid consuming alcohol as it increases their risk for cirrhosis and liver cancer. Hepatitis B virus has been linked to the development of membranous glomerulonephritis (MGN).

Symptoms outside of the liver are present in 1–10% of HBV-infected people and include serum-sickness–like syndrome, acute necrotizing vasculitis (polyarteritis nodosa), membranous glomerulonephritis, and papular acrodermatitis of childhood (Gianotti–Crosti syndrome). The serum-sickness–syndrome occurs in the setting of acute hepatitis B, often preceding the onset of jaundice. The clinical features are fever, skin rash, and polyarteritis. The symptoms often subside shortly after the onset of jaundice but can persist throughout acute hepatitis B. About 30–50% of people with acute necrotizing vasculitis (polyarteritis nodosa) are HBV carriers. HBV-associated nephropathy has been described in adults but is more common in children. Membranous glomerulonephritis is the most common form. Other immune-mediated hematological disorders, such as essential mixed cryoglobulinemia and aplastic anemia.

Cause

Transmission

Transmission of hepatitis B virus results from exposure to infectious blood or body fluids containing blood. It is 50 to 100 times more infectious than HIV. Possible forms of transmission include sexual contact, blood transfusions and transfusion with other human blood products, re-use of contaminated needles and syringes, and vertical transmission from mother to child (MTCT) during childbirth. Without intervention, a mother who is positive for HBsAg has a 20% risk of passing the infection to her offspring at the time of birth. This risk is as high as 90% if the mother is also positive for HBeAg. HBV can be transmitted between family members within households, possibly by contact of non-intact skin or mucous membranes with secretions or saliva containing HBV. However, at least 30% of reported hepatitis B among adults cannot be associated with an identifiable risk factor. Breastfeeding after proper immune prophylaxis does not appear to contribute to mother-to-child transmission (MTCT) of HBV. The virus may be detected within 30 to 60 days after infection and can persist and develop into chronic hepatitis B. The incubation period of the hepatitis B virus is 75 days on average but can vary from 30 to 180 days.

Virology

Structure

 

The structure of hepatitis B virus

Hepatitis B virus (HBV) is a member of the hepadnavirus family. The virus particle (virion) consists of an outer lipid envelope and an icosahedral nucleocapsid core composed of protein. These virions are 30–42 nm in diameter. The nucleocapsid encloses the viral DNA and a DNA polymerase that has reverse transcriptase activity. The outer envelope contains embedded proteins that are involved in viral binding of, and entry into, susceptible cells. The virus is one of the smallest enveloped animal viruses, and the 42 nm virions, which are capable of infecting liver cells known as hepatocytes, are referred to as "Dane particles". In addition to the Dane particles, filamentous and spherical bodies lacking a core can be found in the serum of infected individuals. These particles are not infectious and are composed of the lipid and proteins that form part of the surface of the virion, whichise called the surface antigens (HBsAg) andise produced in excess during the life cycle of the virus.

Genome

The genome of HBV is made of circular DNA, but it is unusual because the DNA is not fully double-stranded. One end of the full-length strand is linked to the viral DNA polymerase. The genome is 3020–3320 nucleotides long (for the full-length strand) and 1700–2800 nucleotides long (for the short-length strand). The negative-sense (non-coding) is complementary to the viral mRNA. The viral DNA is found in the nucleus soon after infection of the cell. The partially double-stranded DNA is rendered fully double-stranded by the completion of the (+) sense strand the removal van of a protein molecule from the (−) sense strand and a short sequence of RNA from the (+) sense strand. Non-coding bases are removed from the ends of the (−) sense strand and the ends are rejoined. There are four known genes encoded by the genome, called C, X, P, and S. The core protein is coded for by gene C (HBcAg), and its start codon is preceded by an upstream in-frame AUG start codon from which the pre-core protein is produced. HBeAg is produced by proteolytic processing of the pre-core protein. In some rare strains of the virus known as Hepatitis B virus pre-core mutants, no HBeAg is present. The DNA polymerase is encoded by gene P. Gene S is the gene that codes for the surface antigen (HBsAg). The HBsAg gene is one long open reading frame but contains three in-frame "start" (ATG) codons that divide the gene into three sections, pre-S1, pre-S2, and S. Because of the multiple start codons, polypeptides of three different sizes called large (the order from surface to the inside: pre-S1, pre-S2, and S), middle (pre-S2, S), and small (S) are produced. The function of the protein coded for by gene X is not fully understood but it is associated with the development of liver cancer. It stimulates genes that promote cell growth and inactivates growth-regulating molecules.

Pathogenesis

Hepatitis B virus replication

The life cycle of hepatitis B virus is complex. Hepatitis B is one of a few known para-retro-viruses: non-retroviruses that still use reverse transcription in their replication process. The virus gains entry into the cell by binding to NTCP on the surface and being endocytosed. Because the virus multiplies via RNA made by a host enzyme, the viral genomic DNA has to be transferred to the cell nucleus by host proteins called chaperones. The partially double-stranded viral DNA is then made fully double-stranded by a viral polymerase and transformed into covalently closed circular DNA (cccDNA). This cccDNA serves as a template for the transcription of four viral mRNAs by host RNA polymerase. The largest mRNA, (which is longer than the viral genome), is used to make the new copies of the genome and to make the capsid core protein and the viral DNA polymerase. These four viral transcripts undergo additional processing and go on to form progeny virions that are released from the cell or returned to the nucleus and recycled to produce even more copies. The long mRNA is then transported back to the cytoplasm where the virion P protein (the DNA polymerase) synthesizes DNA via its reverse transcriptase activity.

Serotypes and genotypes

The virus is divided into four major serotypes (adr, adw, ayr, ayw) based on antigenic epitopes presented on its envelope proteins, and into eight major genotypes (A–H). The genotypes have a distinct geographical distribution and are used in tracing the evolution and transmission of the virus. Differences between genotypes affect the disease severity, course and likelihood of complications, and response to treatment and possibly vaccination. There are two other genotypes I and J but they are not universally accepted as of 2015.

Genotypes differ by at least 8% in their sequence and were first reported in 1988 when six were initially described (A–F). Two further types have since been described (G and H). Most genotypes are now divided into sub-genotypes with distinct properties.

Mechanisms

Hepatitis B virus primarily interferes with the functions of the liver by replicating in hepatocytes. A functional receptor is NTCP. There is evidence that the receptor in the closely related duck hepatitis B virus is carboxypeptidase D. The virions bind to the host cell via the preS domain of the viral surface antigen and are subsequently internalized by endocytosis. HBV-preS-specific receptors are expressed primarily on hepatocytes; however, viral DNA and proteins have also been detected in extrahepatic sites, suggesting that cellular receptors for HBV may also exist on extrahepatic cells.

During HBV infection, the host immune response causes both hepatocellular damage and viral clearance. Although the innate immune response does not play a significant role in these processes, the adaptive immune response, in particular virus-specific cytotoxic T lymphocytes (CTLs), contributes to most of the liver injury associated with HBV infection. CTLs eliminate HBV infection by killing infected cells and producing antiviral cytokines, which are then used to purge HBV from viable hepatocytes. Although liver damage is initiated and mediated by the CTLs, antigen-nonspecific inflammatory cells can worsen CTL-induced immunopathology, and platelets activated at the site of infection may facilitate the accumulation of CTLs in the liver.

Diagnosis

The tests, called assays, for the detection of hepatitis B virus infection, involve serum or blood tests that detect either viral antigens (proteins produced by the virus) or antibodies produced by the host. Interpretation of these assays is complex.

The hepatitis B surface antigen (HBsAg) is most frequently used to screen for the presence of this infection. It is the first detectable viral antigen to appear during infection. However, early in an infection, this antigen may not be present and it may be undetectable later in the infection as it is being cleared by the host. The infectious virion contains an inner "core particle" enclosing the viral genome. The icosahedral core particle is made of 180 or 240 copies of the core protein, alternatively known as hepatitis B core antigen or HBcAg. During this 'window' in which the host remains infected but is successfully clearing the virus, IgM antibodies specific to the hepatitis B core antigen (anti-HBc IgM) may be the only serological evidence of disease. Therefore, most hepatitis B diagnostic panels contain HBsAg and total anti-HBc (both IgM and IgG).

Shortly after the appearance of the HBsAg, another antigen called hepatitis B e antigen (HBeAg) will appear. Traditionally, the presence of HBeAg in a host's serum is associated with much higher rates of viral replication and enhanced infectivity; however, variants of the hepatitis B virus do not produce the 'e' antigen, so this rule does not always hold true. During the natural course of an infection, the HBeAg may be cleared, and antibodies to the 'e' antigen (anti-HBe) will arise immediately afterward. This conversion is usually associated with a dramatic decline in viral replication.

If the host can clear the infection, eventually the HBsAg will become undetectable and will be followed by IgG antibodies to the hepatitis B surface antigen and core antigen (anti-HBs and anti-HBc IgG). The time between the removal of the HBsAg and the appearance of anti-HBs is called the window period. A person negative for HBsAg but positive for anti-HBs either has cleared an infection or has been vaccinated previously.

Individuals who remain HBsAg positive for at least six months are considered to be hepatitis B carriers. Carriers of the virus may have chronic hepatitis B, which would be reflected by elevated serum alanine aminotransferase (ALT) levels and inflammation of the liver if they are in the immune clearance phase of chronic infection. Carriers who have seroconverted to HBeAg negative status, in particular those who acquired the infection as adults, have very little viral multiplication and hence may be at little risk of long-term complications or of transmitting the infection to others.

PCR tests have been developed to detect and measure the amount of HBV DNA, called the viral load, in clinical specimens. These tests are used to assess a person's infection status and to monitor treatment. Individuals with high viral loads, characteristically have ground glass hepatocytes on biopsy.

Prevention

Vaccines for the prevention of hepatitis B have been routinely recommended for infants since 1991 in the United States. Most vaccines are given in three doses for months. A protective response to the vaccine is defined as an anti-HBs antibody concentration of at least 10 mIU/ml in the recipient's serum. The vaccine is more effective in children and 95 percent of those vaccinated have protective levels of antibody. This drops to around 90% at 40 years of age and to around 75 percent in those over 60 years. The protection afforded by vaccination is long-lasting even after antibody levels fall below 10 mIU/ml. Vaccination at birth is recommended for all infants of HBV-infected mothers. A combination of hepatitis B immune globulin and an accelerated course of HBV vaccine prevent HBV transmission around the time of birth in 86% to 99% of cases.

All those with a risk of exposure to body fluids such as blood should be vaccinated, if not already. Testing to verify effective immunization is recommended and further doses of vaccine are given to those who are not sufficiently immunized.

In assisted reproductive technology, sperm washing is not necessary for males with hepatitis B to prevent transmission, unless the female partner has not been effectively vaccinated. In females with hepatitis B, the risk of transmission from mother to child with IVF is no different from the risk of spontaneous conception.

Those at high risk of infection should be tested as there is effective treatment for those who have the disease. Groups that screening is recommended for include those who have not been vaccinated and one of the following: people from areas of the world where hepatitis B occurs in more than 2%, those with HIV, intravenous drug users, men who have sex with men, and those who live with someone with hepatitis B.

Duration of vaccination

In 10- to 22-year follow-up studies there were no cases of hepatitis B among those with a normal immune system who were vaccinated. Only rare chronic infections have been documented.

Treatment

Acute hepatitis B infection does not usually require treatment and most adults clear the infection spontaneously. Early antiviral treatment may be required in fewer than 1% of people, whose infection takes a very aggressive course (fulminant hepatitis) or who are immunocompromised. On the other hand, treatment of chronic infection may be necessary to reduce the risk of cirrhosis and liver cancer. Chronically infected individuals with persistently elevated serum alanine aminotransferase, a marker of liver damage, and HBV DNA levels are candidates for therapy. Treatment lasts from six months to a year, depending on medication and genotype.

Although none of the available drugs can clear the infection, they can stop the virus from replicating, thus minimizing liver damage. As of 2008, there are seven medications licensed for the treatment of hepatitis B infection in the United States. These include antiviral drugs lamivudine (Epivir), adefovir (Hepsera), tenofovir (Viread), telbivudine (Tyzeka) and entecavir (Baraclude), and the two immune system modulators interferon alpha-2a and PEGylated interferon alpha-2a (Pegasys). The World Health Organization recommended a combination of tenofovir and entecavir as first-line agents. Those with current cirrhosis are in most need of treatment.

The use of interferon, which requires injections daily or thrice weekly, has been supplanted by long-acting PEGylated interferon, which is injected only once weekly. However, some individuals are much more likely to respond than others, and this might be because of the genotype of the infecting virus or the person's heredity. The treatment reduces viral replication in the liver, thereby reducing the viral load (the amount of virus particles as measured in the blood). Response to treatment differs between the genotypes. Interferon treatment may produce an e antigen seroconversion rate of 37% in genotype A but only a 6% seroconversion in type D. Genotype B has similar seroconversion rates to type A while type C seroconverts only in 15% of cases. Sustained e antigen loss after treatment is ~45% in types A and B but only 25–30% in types C and D.

Prognosis

Hepatitis B virus infection may be either acute (self-limiting) or chronic (long-standing). Persons with self-limiting infection clear the infection spontaneously within weeks to months.

Children are less likely than adults to clear the infection. More than 95% of people who become infected as adults or older children will stage a full recovery and develop protective immunity to the virus. However, this drops to 30% for younger children and only 5% of newborns that acquire the infection from their mother at birth will clear the infection. This population has a 40% lifetime risk of death from cirrhosis or hepatocellular carcinoma. Of those infected between the ages of one to six, 70% will clear the infection.

Hepatitis D (HDV) can occur only with a concomitant hepatitis B infection because HDV uses the HBV surface antigen to form a capsid. Co-infection with hepatitis D increases the risk of liver cirrhosis and liver cancer. Polyarteritis nodosa is more common in people with hepatitis B infection.

Cirrhosis

Several different tests are available to determine the degree of cirrhosis present. Transient elastography (FibroScan) is the test of choice, but it is expensive. Aspartate aminotransferase to platelet ratio index may be used when cost is an issue.

Reactivation

Hepatitis B virus DNA persists in the body after infection, and in some people, the disease recurs. Although rare, reactivation is seen most often following alcohol or drug use, or in people with impaired immunity. HBV goes through cycles of replication and non-replication. Approximately 50% of overt carriers experience acute reactivation. Males with baseline ALT of 200 UL/L are three times more likely to develop a reactivation than people with lower levels. Although reactivation can occur spontaneously, people who undergo chemotherapy have a higher risk. Immunosuppressive drugs favor increased HBV replication while inhibiting cytotoxic T-cell function in the liver. The risk of reactivation varies depending on the serological profile; those with detectable HBsAg in their blood are at the greatest risk, but those with only antibodies to the core antigen are also at risk. The presence of antibodies to the surface antigen, which is considered to be a marker of immunity, does not preclude reactivation. Treatment with prophylactic antiviral drugs can prevent the serious morbidity associated with HBV disease reactivation.

Epidemiology

In 2004, an estimated 350 million individuals were infected worldwide. National and regional prevalences range from over 10% in Asia to under 0.5% in the United States and Northern Europe.

Routes of infection include vertical transmission (such as through childbirth), early life horizontal transmission (bites, lesions, and sanitary habits), and adult horizontal transmission (sexual contact, intravenous drug use).

The primary method of transmission reflects the prevalence of chronic HBV infection in a given area. In low prevalence areas such as the continental United States and Western Europe, injection drug abuse and unprotected sex are the primary methods, although other factors may also be important. In moderate prevalence areas, which include Eastern Europe, Russia, and Japan, where 2–7% of the population is chronically infected, the disease is predominantly spread among children. In high-prevalence areas such as China and South East Asia, transmission during childbirth is most common, although in other areas of high endemicity such as Africa; transmission during childhood is a significant factor. The prevalence of chronic HBV infection in areas of high endemicity is at least 8% with 10–15% prevalence in Africa/Far East. As of 2010, China has 120 million infected people, followed by India and Indonesia with 40 million and 12 million, respectively. According to the World Health Organization (WHO), an estimated 600,000 people die every year related to the infection.

In the United States about 19,000 new cases occurred in 2011 down nearly 90% from 1990.

History

The earliest record of an epidemic caused by the hepatitis B virus was made by Lurman in 1885. An outbreak of smallpox occurred in Bremen in 1883 and 1,289 shipyard employees were vaccinated with lymph from other people. After several weeks, and up to eight months later, 191 of the vaccinated workers became ill with jaundice and were diagnosed as suffering from serum hepatitis. Other employees who had been inoculated with different batches of lymph remained healthy. Lurman's paper, now regarded as a classical example of an epidemiological study, proved that contaminated lymph was the source of the outbreak. Later, numerous similar outbreaks were reported following the introduction, in 1909, of hypodermic needles that were used, and, more importantly, reused, for administering Salvarsan for the treatment of syphilis. The virus was not discovered until 1966 when Baruch Blumberg, then working at the National Institutes of Health (NIH), discovered the Australia antigen (later known to be hepatitis B surface antigen or HBsAg) in the blood of Australian aboriginal people. Although a virus had been suspected since the research published by Frederick MacCallum in 1947, David Dane and others discovered the virus particle in 1970 by electron microscopy. By the early 1980s, the genome of the virus had been sequenced, and the first vaccines were being tested.

Society and culture

World Hepatitis Day, observed July 28, aims to raise global awareness of hepatitis B and hepatitis C and encourage prevention, diagnosis, and treatment. It has been led by the World Hepatitis Alliance since 2007 and in May 2010, it got global endorsement from the World Health Organization.

No comments:

Post a Comment